若f(x)=x^2-x+b,且f(log2a)=b,log2 f(a)=2(a≠1).(注:x^2表示x的平方)
1个回答

若f(x) = x^2 - x + b,且f(log_{2}a) = b,log_{2} f(a) = 2,(a≠1).

①求f(log_{2}x)的最小值及对应的x值;

②x取何值时,f(log_{2}x) > f(1)且 log_{2} f(x) < f(1).

由,

b = f(log_{2}a) = [log_{2}a]^2 - log_{2}a + b,

0 = [log_{2}a]^2 - log_{2}a = log_{2}a[log_{2} - 1],

0 = log_{2}a - 1,[因a≠1,所以 log_{2} a ≠ 0]

1 = log_{2}a,

a = 2.

f(a) = a^2 - a + b = 2 + b.

由,

log_{2}f(a) = 2,

log_{2}(2 + b) = 2,

2 + b = 2^2 = 4,

b = 2.

因此,

f(x) = x^2 - x + 2

= x^2 - x + 1/4 + 7/4

= (x - 1/2)^2 + 7/4.

所以,f(x) 在 x = 1/2处取得最小值 7/4.

由于,log_{2}x = 1/2,x = 2^(1/2).

因此,

① f(log2x)的最小值为 7/4,对应的x值为 2^(1/2).

f(1) = 1^2 - 1 + 2 = 2,

f(log_{2}x) = [log_{2}x]^2 - log_{2}x + 2 > f(1) = 2,x > 0.

[log_{2}x]^2 - log_{2}x > 0,

log_{2}x[log_{2}x - 1] > 0,

则,

log_{2}x > 0 且 log_{2}x > 1.

或者,log_{2}x < 0 且log_{2}x < 1.

也就是,

x > 1,且,x > 2,

或者,0 < x < 1,且,0 < x < 2.

所以,

x > 2,或者,0 < x < 1..(1)

再由,

log_{2} f(x) < f(1) = 2,

0 < f(x) < 2^2 = 4,

0 < x^2 - x + 2 < 4,

因,x^2 - x + 2 = (x - 1/2)^2 + 7/4 >= 7/4 > 0.

所以,只要考虑,

x^2 - x + 2 < 4,

x^2 - x - 2 < 0,

(x - 2)(x + 1) < 0.

-1 < x < 2.

但 由于(1),x > 2,或者,0 < x < 1.

因此,

② 0 < x < 1时,f(log_{2}x) > f(1)且log_{2}f(x) < f(1).