已知x,y≠kπ+[π/2](k∈Z),sinx是sinθ,cosθ的等差中项,siny是sinθ,cosθ的等比中项.
1个回答

证明:(1)∵sinθ与cosθ的等差中项是sinx,等比中项是siny,

∴sinθ+cosθ=2sinx①,sinθcosθ=sin2y②,

2-②×2,可得(sinθ+cosθ)2-2sinθcosθ=4sin2x-2sin2y,即4sin2x-2sin2y=1.

∴4×[1−cos2x/2]-2×[1−cos2y/2]=1,即2-2cos2x-(1-cos2y)=1.

故证得cos2x=[1/2]cos2y;

(2)要证

2(1−tan2x)

1+tan2x=

1−tan2y

1+tan2y,只需证

1−

sin2x

cos2x

1+

sin2x

cos2x=

1−

sin2y

cos2y

2(1+

sin2y

cos2y),

即证

cos2x−sin2x

cos2x+sin2x=

cos2y−sin2y

2(cos2y+sin2y),即证cos2x-sin2x=[1/2](cos2y-sin2y),只需证cos2x=[1/2]cos2y.

由(1)的结论,cos2x=[1/2]cos2y显然成立.

所以

2(1−tan2x)

1+tan2x=

1−tan2y

1+tan2y.