解题思路:先根据第二象限点的坐标特征求出x,y的取值范围,再根据y的取值范围求出x的整数解,进而可求出符合条件的y的值.
∵点P(x,y)位于第二象限,∴x<0,y>0,
又∵y≤2x+6,∴2x+6>0,即x>-3,所以-3<x<0,x=-1或-2,
当x=-1时0<y≤4,y=1,2,3,4;
当x=-2时,y≤2,即y=1或2;
综上所述,点P为:(-1,1),(-1,2)(-1,3),(-1,4),(-2,1),(-2,2)共6个点.
点评:
本题考点: 一元一次不等式组的整数解;点的坐标.
考点点评: 本题主要考查了不等式的解法及坐标系内点的坐标特点,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求特殊值.