如图,在平面直角坐标系中,抛物线y=ax²+bx+c的对称轴为直线x=-3/2,抛物线与x轴的交点为A、B,
1个回答

(1)顶点在对称轴 x= -3/2上

MC的解析式是y= (3/4)x - 2

x = -3/2,y = -9/8 -2 = -25/8

M(-3/2,-25/8)

(2) y = ax²+bx+c = a[x + b/(2a)]²+ c -b^2/(4a)

对称轴为x = -b/(2a) = -3/2,b= 3a (a)

C(0,-2)

-2 = 0 + 0 +c

c = -2 (b)

顶点M纵坐标 c -b^2/(4a) = -25/8 (c)

(a)(b)(c):a = 1/2,b = 3/2

求抛物线的解析式:y = (1/2)x² + (3/2)x - 2

(3) y = (1/2)x² + (3/2)x - 2 = 0

(x+4)(x-1)= 0

A(-4,0),B(1,0)

半径 = (1+4)/2 = 5/2

圆心P(-3/2,0)

直线MC的解析式是y= (3/4)x - 2,3x - 4y - 8 = 0

圆心和直线MC的距离:|3(-3/2) - 4*0 -8|/√(3²+4²) = (25/2)/5 = 5/2,等于半径,直线MC与圆相切