若实数x,y满足 x+y=3,x^2+y^2=7,求x^5+y^5的值
收藏:
0
点赞数:
0
评论数:
0
2个回答

x^2+y^2=(x+y)^2-2xy

即7=3^2-2xy

则2xy=9-7=2

xy=1

x^3+y^3=(x+y)(x^2-xy+y^2)

=3×(7-1)

=18

(x^2+y^2)(x^3+y^3)

=x^5+x^2y^3+y^2x^3+y^5

将xy=1代入上式

得x^5+y^5+y+x

=x^5+y^5+3

又(x^2+y^2)(x^3+y^3)

=7×18

=126

x^5+y^5+3=126

x^5+y^5=123

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识