1.正弦定理a/sinA=b/sinB=c/sinC
所以a:b:c=3:5:√19
令a=3k,b=5k,c=√19k
cosC=(a²+b²-c²)/2ab=15k²/30k²=1/2
所以角C=60度
2.由sin^2A+sin^2B-sinAsinB=sin^2C
由正弦定理sinA=a/2R,sinB=b/2R,sinC=c/2R
则(a/2R)^2+(b/2R)^2-(a/2R)(b/2R)=(c/2R)^2
可得c^2=a^2+b^2-ab
由余弦定理c^2=a^2+b^2-2abcosC
所以cosC=1/2
c=60'
纯手打,请采纳