数列{a n }是公差为正数的等差数列,a 2 、a 5 且是方程x 2 -12x+27=0的两根,数列{b n }的前
1个回答

(1)∵等差数列{a n}的公差d>0,a 2、a 5且是方程x 2-12x+27=0的两根,

∴a 2=3,a 5=9.

∴d=

9-3

5-2 =2,

∴a n=a 2+(n-2)d=3+2(n-2)=2n-1;

又数列{b n}中,T n=1-

1

2 b n,①

∴T n+1=1-

1

2 b n+1,②

②-①得:

b n+1

b n =

1

3 ,又T 1=1-

1

2 b 1=b 1

∴b 1=

2

3 ,

∴数列{b n}是以

2

3 为首项,

1

3 为公比的等比数列,

∴b n=

2

3 • (

1

3 ) n-1 ;

综上所述,a n=2n-1,b n=

2

3 • (

1

3 ) n-1 ;

(2)∵c n=a n•b n=(2n-1)•

2

3 • (

1

3 ) n-1 ,

∴S n=a 1b 1+a 2b 2+…+a nb n

=1×

2

3 +3×

2

3 ×

1

3 +…+(2n-1)×

2

3 × (

1

3 ) n-1 ,③

1

3 S n=

2

3 ×

1

3 +3×

2

3 × (

1

3 ) 2 +…+(2n-3)×

2

3 × (

1

3 ) n-1 +(2n-1)×

2

3 × (

1

3 ) n ,④

∴③-④得:

2

3 S n=

2

3 +

4

3 [

1

3 + (

1

3 ) 2 + (

1

3 ) 3 +…+ (

1

3 ) n-1 ]-(2n-1)×

2

3 × (

1

3 ) n ,

S n=1+2[

1

3 + (

1

3 ) 2 + (

1

3 ) 3 +…+ (

1

3 ) n-1 ]-(2n-1)× (

1

3 ) n

=1+2×

1

3 [1- (

1

3 ) n-1 ]

1-

1

3 -(2n-1)× (

1

3 ) n

=2-

2n+2

3 × (

1

3 ) n-1

=2-(2n+2)× (

1

3 ) n .