箱子中装有大小相同的4个红球、6个黑球,每次从中摸取1个球.每个球被取到可能性相同,现不放回地取3个球.
2个回答

解题思路:(1)直接考虑至少取到2个红球包括:2个红球或3个红球,然后套用等可能事件的概率公式,也可间接求解,考虑没有取到红球的情况;

(2)由于第三次取出的是红球,有4种情况,前两次有A92种情况,故可求第三次取出的是红球的情况总数.

(1)至少有两个红球的概率为

C24

C16+

C34

C310=

3

10+

1

30=

1

3

或1−

C36

C310−

C14

C26

C310=1−

1

6−

1

2=

1

3(6分)

(2)第三个取出红球时的概率为

C14

A29

A310=

4

10=

2

5

或因第三个取出红球的概率等于第一次取出红球的概率,故为[2/5].(12分)

点评:

本题考点: 等可能事件的概率.

考点点评: 本题的考点是等可能事件的概率,主要考查概率公式的运用,在解题的过程中,注意变量对应的事件,结合事件和等可能事件的概率公式来求解