假设擦去的数是m,则
n-1个数之和为1+2+……+n-m=n(n+1)/2-m
平均值为[n(n+1)/2-m]/(n-1)=35+5/7=250/7
可得
[n(n+1)/2-m]/(n-1)
=[n(n-1)+2(n-1+1-m)]/2(n-1)
=n/2+1-(m-1)/(n-1)=250/7
即:n-2(m-1)/(n-1)=486/7
因为1≤m≤n,所以0≤2(m-1)/(n-1)≤2
所以n=486/7+2(m-1)/(n-1)
486/7≤n≤500/7
n可取70或者71
当n=70时,m=20+5/7
当n=71时,m=56
因为m取整数,所以取n=71时,m=56