又一个二重积分,奇偶性问题f(x)为奇函数,问∫dx∫xf(u)du的奇偶性, 都为变限积分x上下限(y a) u上下限
1个回答

证明:

设 F(x) = [x,a]∫f(u)du ;[x,a]表示积分限下限为a,上限为x

F(y) = [y,a]∫dx*[x,a]∫xf(u)du = [y,a]∫x*F(x)*dx

首先证明F(x)的奇偶性

F(-x) = [-x,a]∫f(u)du

设 u =-v,则上式变为:

F(-x) = [x,-a]∫f(-v)d(-v),由于f(v)为奇函数,f(-v) = -f(v),因此

F(-x) = [x,-a]∫f(v)dv

= [x,a]∫f(v)dv + [a,-a]∫f(v)dv

= F(x) + 0 =F(x)

即:F(x) 为偶函数

同样:

F(-y) = [-y,a]∫x*F(x)*dx,令 x=-z,则有:

F(-y) = [y,-a]∫(-z)F(-z)*d(-z)

= [y,-a]∫zF(z)dz

= [y,a]∫zF(z)dz + [a,-a]∫zF(z)dz

= F(y) + 0 =F(y)

因此F(y)为偶函数,即[y,a]∫dx*[x,a]∫xf(u)du 为偶函数