已知sin(5pi+a)=-3/5,且a属于(pi/2,pi)又tan(b+pi/4)=3.
1个回答

sin(5pi+a)=-3/5

-sina=-3/5

sina=3/5

∵a属于(pi/2,pi)

∴cosa=-√(1-sin^2a)=-4/5

tana=sina/cosa=-3/4

tan(b+pi/4)=3

(tanb+tanpi/4)/(1-tanbtanpi/4)=3

(tanb+1)/(1-tanb)=3

tanb+1=3-3tanb

tanb=1/2

tan(a-b)

=(tana-tanb)/(1+tanatanb)

=(-3/4-1/2)/(1+(-3/4)*1/2))

=-5/4 / 5/8

=-2

sin2a=2sinacosa=2*3/5*(-4/5)=-24/25

cos2a=2cos^2a-1=2*(-4/5)^2-1=7/25

sin(2a+pi/3)

=sin2acospi/3+cos2asinpi/3

=-24/25*1/2 +7/25*√3/2

=(7√3-24)/50