质量为60kg跳伞运动员从2000m高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比
1个回答

解题思路:(1)整个过程中,运动员先做变加速运动,接着匀减速,最后匀速运动,作出v-t图线如图(1)所示.由于第一段内 做非匀变速直线运动,用常规方法很难求得这1800m位移内的运动时间.考虑动量定理,将第一段的v-t图线按比例转化成f-t图,如图(2)所示,则可巧妙地求得变加速运动的时间.

(2)根据匀变速运动的规律求出匀减速运动的位移,得到匀速运动的位移,求得匀速运动的时间,即可求得总时间.

(3)运用动量定理对整个过程研究,即可求得空气阻力的总冲量.

(1)设变加速下落的时间为t1,作出运动员的v-t图象,取向下为正方向,则由动量定理得:

mgt1-If=mvm

而 If=

f•△t=

kv•△t=k

v•△t=ks1

又mg=kvm,得k=[mg

vm,所以可得

mgt1-

mgs1

vm=mvm

得 t1=

vm/g]+

s1

vm=[50/10]+[1800/50]=41s

(2)第二段匀减速运动的1s时间内,位移为 s2=

vm+v1

2t2=[50+5/2×1m=27.5m

所以匀速运动的位移为 s3=200-s2=200-27.5=172.5m

时间为 t3=

s3

v1]=[172.5/5]s=34.5s

整个过程所用时间为 t=t1+t2+t3=41+1+34.5=76.5s.

(3)对整个过程,运用动量定理得:

mgt+I=mv1

可得 I=mv1-mgt=60×5-60×10×76.5=-45600N•s

即空气阻力的总冲量大小为45600N•s,方向向上.

答:

(1)运动员降落到离地面200m高处所用时间;

(2)整个过程所用时间为76.5s;

(3)整个过程中空气阻力的总冲量大小为45600N•s,方向向上.

点评:

本题考点: 动量定理.

考点点评: 解决本题的关键知道运动员在整个过程中的运动情况,结合动量定理,通过图象法,运用微分思想进行解决,难度较大.

相关问题