设等比数列{bn}的公比是q,前n项和为Tn,
等差数列{an}的公差为d,前n项和为T'n
Sn=c1+c2+…+cn
=a1b1+a2b2+…+anbn
qSn= a1b2+…+a(n-1)bn+anb(n+1)
两式错位相减得
(1-q)Sn=a1b1+(a2-a1)b2+…+[an-a(n-1)]bn-anb(n+1)
=a1b1+(b2+…+bn)d-anb(n+1)
然后用等比数列的前n项和公式就可求出Sn
当q=1时,bn=b1,Tn=nb1
Sn=a1b1+a2b1+…+anb1=(a1+a2+…+an)b1=b1*T'n
当q≠1时,Sn=[a1b1+(b2+…+bn)d-anb(n+1)]/(1-q)=[a1b1+(Tn-b1)d-anb(n+1)]/(1-q)