7. 解 要使
0 = lim(x→+∞)[√(x²-x+1) - (β-αx)]
= lim(x→+∞)[(x²-x+1) - (β-αx)²]/[√(x²-x+1) + (β-αx)]
= lim(x→+∞)[(1-α²)x²+(2αβ-1)x+(1-β²)]/[√(x²-x+1) + (β-αx)]
= lim(x→+∞)[(1-α²)x+(2αβ-1)+(1-β²)/x]/[√(1-1/x+1/x²) + (β/x-α)]
成立,须有
1-α² = 0,2αβ-1 = 0,1-α≠0,
由此可解得
α = -1,β = -1/2,
故选 C.
8. 解 由于
f(0-0) = lim(x→0-){[1-2e^(1/x)]/[1-2e^(1/x)]}arctan(1/x) = -π/2,
f(0+0) = lim(x→0+){[e^(-1/x)-2]/[e^(-1/x)+1]}arctan(1/x) = π,
得知 x=0 是 f(x) 的第一类间断点(跳跃间断点).