数学题(28)
1个回答

证明:(1)连接AF,BG,

∵AC=AD,BC=BE,F、G分别是DC、CE的中点,

∴AF⊥BD,BG⊥AE.

在直角三角形AFB中,

∵H是斜边AB中点,

∴FH=1/2AB.

同理得HG=1/2AB,

∴FH=HG.

(2)∵FH=BH,

∴∠HFB=∠FBH;

∵∠AHF是△BHF的外角,

∴∠AHF=∠HFB+∠FBH=2∠BFH;

同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,

∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.

又∵∠DAC=180°-∠ADB-∠ACD

=180°-2∠ADB

=180°-2(∠BFH+∠AGH)

=180°-2∠BFH-2∠AGH

=180°-∠AHF-∠BHG,

而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG,

∴∠FHG=∠DAC.