设数列{an}前n项和为Sn,满足an=3/4Sn+1/2(n∈N*)(1)求数列{an}的通项公式;(2)令bn=na
2个回答

(1)

an=(3/4)Sn+1/2 (1)

put n=1

a1= (3/4)a1+1/2

a1=2

a(n-1) =(3/4)S(n-1)+1/2 (2)

(1)-(2)

(3/4)an=an-a(n-1)

an/a(n-1)= 4

an/a1 = 4^(n-1)

an = a1.4^(n-1)

=2^(2n-1)

(2)

bn=nan

Tn = b1+b2+..+bn

= summation n(2^(2n-1))

= (1/2)summation (n.2^2n )

consider

1+x+x^2+..+x^n = (x^(n+1)-1)/(x-1)

1+2x+...+n(x^(n-1))

= [(x^(n+1)-1)/(x-1)]'

= { (x-1)(n+1)x^n - (x^(n+1)-1) }/(x-1)^2

= { nx^(n+1)-(n+1)x^n+1 } /(x-1)^2

multiply both side by x

x+2x^2+...+nx^n = x{ nx^(n+1)-(n+1)x^n+1 } /(x-1)^2

put x = 2^2

2^2+ 2(2^4)+...+n(2^2n) = (4/9) [n2^(2n+2)-(n+1)2^(2n)+1 ]

Tn = (1/2)summation (n.2^2n )

= (1/2){(4/9) [n2^(2n+2)-(n+1)2^(2n)+1 ] }

= (2/9) [n2^(2n+2)-(n+1)2^(2n)+1 ]

(3)

Tn+a/(n·2^2(n+1))-2/9 >0

(2/9) [n2^(2n+2)-(n+1)2^(2n)+1 ] + a/(n·2^2(n+1)) - 2/9 >0

a/(n·2^2(n+1)) > (2/9) [(n+1)2^(2n) - n2^(2n+2)]

= (1/9)[2^(2n+1)](n+1 - 4n)

= (1/9)(1-3n).2^(2n+1)

a > (1/9)(1-3n)/n