求不定积分∫√(a^2+x^2)dx
1个回答

令x=atanz

dx=asec²z dz

原式=∫asecz*asec²z dz

=∫secz dtanz,a²先省略

=secztanz - ∫tanz dsecz

=secztanz - ∫tanz(secztanz) dz

=secztanz - ∫sec³z dz + ∫secz dz

∵2∫sec³z dz = secztanz + ln|secz + tanz|

∴∫sec³z dz = (1/2)secztanz + (1/2)ln|secz + tanz| + C

原式=(1/2)a²secztanz + (1/2)a²ln|secz + tanz| + C1

=(1/2)x√(a²+x²) + (1/2)a²ln|x + √(a²+x²)| + C2