等比数列练习题,1、再等比数列{an}中,公比为q,a1+a2+a3=18,a2+a3+a4=-9,则a1比1-q为__
1个回答

1.(a1+a2+a3)/(a2+a3+a4)=a1(1+q+qq)/[a1qq(1+q+qq)=1/q=-2

q=-1/2

a1+a2+a3=a1(1+q+qq)=18

a1=-72

a1/(1-q)=-72/(1+1/2)=-48

2.因为a1=1/n,an=a1*q^(n-1),

所以a(n+2)=a1*q^(n+1)=(1/n)*q^(n+1)=n+1

即q^(n+1)=(n+1)*n

q1*q2*q3*……*qn=q^(1+2+3+……+n)=q^(1+n)*n/2

=[(n+1)*n]^1/2

=根号下〔(n+1)*n〕

3.因为an=a1*q^(n-1),

a1=1,a的2n+2项=2

所以

2=1*q^(2n+1)即q^(2n+1)=2

x1*x2*x3*……x2n

=q^1*q^2*q^3*……*q^2n

=q^(1+2+3+……+2n)

=q^[(1+2n)*2n/2]

=q^[n*(2n+1)]

=[q^(2n+1)]^n

=2^n