如图(1),等腰直角三角形ABC中∠C=90°,AD是△ABC的角平分线,过点D作AB的垂线,垂足是E,作AD的中垂线G
1个回答

∵△ABC是等腰三角形,CD=m,DB=n

∴AC=m+n

△ABC是直角三角形,由勾股定理:

AB=根号2倍的AC

△ACD是直角三角形,由勾股定理:

AD的平方=AC的平方+CD的平方

∵GF是AD的中垂线

∴GD=1/2倍的AD

∵AD是∠CAB的角平分线,∠C=90°,DE⊥AB

∴DE=CD=m,AE=AC=m+n

∵GF⊥AD,DE⊥AB

∴∠AED=∠FGD

又∵∠ADE=∠FDG

∴△ADE∽△FDG

就有比例:DE/AE=DG/FG

即可求得FG=AE·DG/DE

三角形AFD的面积S=1/2倍的AD·FG

把之前求得的式子与数据代进去,就可以算出来了

由于不能上传图片(等级不够),所以就口诉了,总体过程就这样了.