为什么圆锥是与它等底等高的圆柱体积的1/3(数学公式解答)
1个回答

把圆锥沿高分成k分

每份高 h/k,

第 n份半径:n*r/k

第 n份底面积:pi*n^2*r^2/k^2

第 n份体积:pi*h*n^2*r^2/k^3

总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3

因为

1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6

所以

总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3

=pi*h*r^2* k*(k+1)*(2k+1)/6k^3

=pi*h*r^2*(1+1/k)*(2+1/k)/6

因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0

所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3

因为V柱=pi*h*r^2

所以

V锥是与它等底等高的V柱体积的1/3

我的分太少了,帮帮忙.