如图7-32在四边形abcd中ab=bc=cd角abc=90度角bcd=150度求角bad的度数
1个回答

连接AC.

△ABC是直角等腰三角形.

∠bac=45°

ac=√2*ab

∠acd=150°-∠acb=105°

在△acd中

Sin∠cad/cd=Sin∠adc/ac

∵ab=cd

∴Sin∠cad=Sin(180°-∠acd-∠cad)/√2

√2Sin∠cad=Sin(75°-∠cad)

=Sin75°Cos∠cad-Sin∠cadCos75°

√2Sin∠cad+Sin∠cadCos75° =Sin75°Cos∠cad

(√2+Cos75°)*Sin∠cad=Sin75°Cos∠cad

tg∠cad = Sin75°/(√2+Cos75°)

=( Sin45°Cos30°+Sin30°Cos45° )

/ (√2+Cos45°Cos30°-Sin45°Sin30°)

= [(√2 /2)*(√3 /2) + (1/2)*(√2 /2) ]

/ [√2+(√2 /2)*(√3 /2)-(√2 /2)*(1/2)]

=(√2 +√6)/(3 √2+√6)

=[(√2 +√6)(3 √2-√6)]/[(3 √2+√6)(3 √2-√6)]

=(6+3√12-√12-6)/(18-6)

=√3 /3

∠cad =30°

∠bad=∠bac+∠cad=75°

答:∠bad=75° .

另一种方法:

连接BD.

∵bc=cd

∴bd^2=2cd^2-2cd^2*Cos150°

=2cd^2+2cd^2*Cos30°

=(2+√3)*cd^2

∵ac=√2*ab=√2*cd

∴ad^2=cd^2+ac^2-2cd*ac*Cos(150°-∠acb)

=cd^2+2cd^2+2√2cd^2*Cos75°

=3cd^2+2√2cd^2*(√6-√2)/4

=(2+√3)*cd^2

∵ad=bd

∴△abd是等腰三角形

∵∠abd=∠abc-∠cbd=90°-15°=75°

∴∠bad=∠abd=75°

答:∠bad=75° .