作DF∥AE交BC于F,
设AD/DB=k ,BF=a, FE=b, EC=c
∴b/a=AD/DB=k 则b=ak…………………(1)
因为AB=BC AD=BE
∴DB=CE S△ADC=S△ABE
∴S△ADF=S四边形DBEF=2/7
∴(a+b)/c=AD/DB=b/a
∴c=a(a+b)/b…………………………………(2)
(1)代入(2)c=a(1+k)/k………………………(3)
(1)/(3)得:b/c=(k^2)/(1+k)=DF/FC
∴S△ADC=k/(k+1)*S△ABC=k/(k+1)
∴S△AFC=[k/(k+1)]*(1+k)/[(k^2)+(k+1)]=2/7
∴2(k^2)-5k+2=0
k[1]=2, k[2]=1/2
∴AD/DB=2或1/2.