已知函数f(x)=cos4x+2sinxcosx-sin4x求(1)f(x)单调区间.(2)若x∈[0,∏/2]求f(x
1个回答

已知函数f(x)=cos^4x+2sinxcosx-sin^4x

求(1)f(x)单调区间.(2)若x∈[0,π/2],求f(x)的最大值和最小值

【解】①f(x)=cos^4x+2sinxcosx-sin^4x=( cos^4x-sin^4x) +2sinxcosx

=( cos^2x+sin^2x) ( cos^2x-sin^2x)+ sin2x

= cos^2x-sin^2x+ sin2x= cos2x+ sin2x

=√2sin(2x+π/4)

2kπ-π/2≤2x+π/ 4 ≤2kπ+π/2,k∈Z.

kπ-3π/8≤x≤kπ+π/8,k∈Z.

递增区间是[kπ-3π/8,kπ+π/8] ,k∈Z.

2kπ+π/2≤2x+π/ 4 ≤2kπ+3π/2,k∈Z.

kπ+π/8≤x≤kπ+5π/8,k∈Z.

递减区间是[kπ+π/8,kπ+5π/8] ,k∈Z.

②x∈[0,π/2],则2x+π/ 4∈[π/ 4,5π/4],

∴sin(2x+π/4) ∈[-√2/2,1].

√2sin(2x+π/4) ∈[-1,√2].

f(x)的最大值是√2(x=π/8时),最小值是-1(x=π/2时).