1个小时内就要1、定义在R的函数f(a)满足(1)、对任意x,y属于R,有f(x+y)=f(x)+f(y)(2)、当x大
1个回答

1、

① f(x)=f(x+0)=f(x)+f(0) => f(0)=0

② f(1)= -2 => 对任意 x>0 有f(x) < 0 => f(x)单调减

③ f(1) = -2 => f(4)= -8

f(0) = f(x)+f(-x) => f(-x) = -f(x) => f(x^2-2x)-f(x) = f(x^2 -3x)

f(x)单调减,则 f(x^2-2x)-f(x)≥ -8 等价于 x^2 - 3x ≥4

这个不等式自己解吧~

2、

①f(x)=f(x*1)=f(x)+f(1) => f(1) = 0

f(1) = f[(-1)*(-1)]=2f(-1) => f(-1) = 0

②对任意x 有 f(-x)=f(x)+f(-1)=f(x),因此f(x)为偶函数

③f(x)+f(x-1/2)= f[x(x-1/2)] ≤ 0 ,f(1)= 0,且f(x)在x>0时单调增

则此问等价于解不等式 |x*(x-1/2)|≤1

不等式自己解,嗯.

3、x为奇函数,则对任意x满足 f(x)+f(-x)= 0 ;

不妨设x0,f(x) + f(-x) = f(x) + (-x)^2 = f(x) + x^2 = 0

即 x