(1)f'(x)=cosx
则an=π/2+2nπ
(2)2^n*an=π/2*2^n+2nπ*2^n
Sn=π/2(2^(n+1)-1)+2π*2+4π*2^2+6π*2^3+8π*2^4……+(n-1)π*2^(n-1)+2nπ*2^n
因为【2π*2+4π*2^2+6π*2^3+8π*2^4……+(n-1)π*2^(n-1)+2nπ*2^n】*2-2π*2+4π*2^2+6π*2^3+8π*2^4……+(n-1)π*2^(n-1)+2nπ*2^n
=2nπ*2^(n+1)-2π(2+……+2^(n-1))
=2nπ*2^(n+1)+2π(1-2^n)
所以Sn=π/2(2^(n+1)-1)+2nπ*2^(n+1)+2π(1-2^n)