用反证法
不妨设原式可以分解成(x+py+q)(x+sy+t)
那么原式=x²+(p+s)xy+psy²+(t+q)x+(qs+pt)y+qt=x²+mxy+2y²+3x+3y+2
则p+s=m,ps=2,t+p=3,qs+pt=3,qt=2
ps=2,qt=2说明p、s同号,q、t同号
若p、s为正,q、t为负,那么qs+pt<0与qs+pt=3矛盾
若p、s为负,q、t为正,那么qs+pt<0与qs+pt=3矛盾
所以p、s、q、t都同号
则psqt=2×2=4
3=qs+pt≥2√qspt=2√4=4矛盾
所以原假设不成立