已知an=(2n-1)/2^(n-1),求an的前n项和
1个回答

1.

Sn=A1+A2+……+An

=1/2^0+3/2^1+5/2^2……+(2n-1)/2^(n-1)

两边同乘2

2Sn=2+3/1+5/2+……+(2n-1)/2^(n-2)

两式错位相减

2Sn-Sn=2+[2+2/2+2/4+……+2/2^(n-2)]-(2n-1)/2^(n-1)

Sn=2+2×(1-(1/2)^(n-1))/(1-1/2)-(2n-1)/2^(n-1)

=6-(2n+3)/2^(n-1)

2.

当n为偶数时n=2k,

A(2k)+A(2k-1)=(2(2k)+1)×(2(2k)-1)-(2(2k-1)+1)×(2(2k-1)-1)

=(4(2k)^2-1)-(4(2k-1)^2-1)

=4(4k-1)

Sn=S(2k)=[(A2+A1)+(A(2k)+A(2k-1))]×k/2

=(4×3+4(4k-1))×k/2

=4k(2k+1)

=2n(n+1)

当n为奇数时,

Sn=S(n-1)+An

S(n-1)用上面求得公式套

S(n-1)=2(n-1)((n-1)+1)=2n(n-1)

Sn=2n(n-1)+(-1)^n×(2n+1)×(2n-1)