y=sin2x-3(sinx+cosx)
=2sinxcosx-3(sinx+cosx)
=(sinx+cosx)²-(sin²x+cos²x)-3(sinx+cosx)
=(sinx+cosx)²-3(sinx+cosx)-1
=(sinx+cosx-3/2)²-13/4
=[√2sin(x+π/4)-3/2]²-13/4
当√2sin(x+π/4)3/2时,y单调递增
且关于√2sin(x+π/4)=3/2对称
又-√2≤√2sin(x+π/4)≤√2
∴当√2sin(x+π/4)=-√2时,y取最大值
y(max)=(-√2-3/2)²-13/4=3√2+1