P关于的对称点为P'(a, b)
x + 5y - 11 = 0, y = -x/5 + 11/5, 斜率k = -1/5
PP'斜率k' = 5, 方程: y - 4 = 5(x - 4)
与y = -x/5 + 11/5联立得交点A(7/2, 3/2)
A为PP'的中点:
7/2 = (a + 4)/2, a = 3
3/2 = (b + 4)/2, b = 1
P'(3, 1)
联立L1, L得交点B(1, 2)
P'B即为L2 (不明白再问):
(y - 1)/(2 - 1) = (x - 3)/1 - 3)
x + 2y - 5 = 0