高二数学f(x)=x^3+g(x),其中g(x)=ax^2+bx+c,若曲线y=f(x)上的点P(1,f(1))处的切线
1个回答

1)

P(1,f(1))处的切线方程为y=3x+1

=>

切点:(1,3*1+1)即(1,4)

=>

f(1)=4

=>

a+b+c+1=4

f(x)=x^3+ax^2+bx+c

=>

f'(x)=3x^2+2ax+b

y=3x+1

=>

k=3

=>

f'(1)=3

=>

3+2a+b=3

-2极值

=>

f'(-2)=0

=>

3*4-4a+b=0

连列方程:

a+b+c+1=4

3+2a+b=3

3*4-4a+b=0

=>

a=-1,b=2,c=2

2)去掉1)中第三个方程

=>

a+b+c+1=4

3+2a+b=3

=>

2a+b=0

-2,1上单调递增

=>

-2,1上f'(x)>0

=>

-2,1上3x^2+2ax+b>0

=>

-2,1上3x^2-bx+b>0

以下略

应用题:

单价p

=>

p^2与x成反比

=>

p^2=k/x(k待定)

=>

p=50时,x=100

=>

50^2=k/100

=>

k=250000

=>

x=250000/p^2

利润y=单价*件数-成本

=p*x-C(x)

=(k/x)^(1/2)*x-1200-(2/75)*x^3

=500*x^0.5-(2/75)*x^3-1200

=>

y'=500*0.5*x^(-0.5)-(2/75)*3x^2

令y'=0

=>

x=5

且x>5时,y'