有理函数的不定积分!∫(x^2-2x+3)cos2x dx
1个回答

用分部积分法,

∫(x^2-2x+3) cos2x dx

=∫ 0.5(x^2-2x+3) d(sin2x)

=0.5(x^2-2x+3)*(sin2x) - ∫ 0.5(sin2x) d(x^2-2x+3)

=0.5(x^2-2x+3)*(sin2x) - ∫ 0.5(sin2x)(2x-2) dx

∫ 0.5(sin2x)(2x-2) dx

=∫ -0.5(x-1) d(cos2x)

= -0.5(x-1)*(cos2x) + ∫ 0.5cos2x dx

=-0.5(x-1)*(cos2x) + 0.25sin2x +C(C为常数)

所以

∫(x^2-2x+3) cos2x dx

=0.5(x^2-2x+3)*(sin2x) - ∫ 0.5(sin2x)(2x-2) dx

=0.5(x^2-2x+3)*(sin2x) - [-0.5(x-1)*(cos2x) + 0.25sin2x]+C

=0.5(x^2-2x+3)*(sin2x) + 0.5(x-1)*(cos2x) - 0.25sin2x +C(C为常数)