如果各位数字都是1的某个整数能被3333333整除,那么该整数中1的个数最少有______个.
1个回答

解题思路:先将3333333分解质因数,再看要求的数需具备的特征是什么,进一步求得符合条件的数.

3333333=3×1111111,

要能被3333333整除,就要能同时被1111111和3整除,1的个数必须是7的倍数,

同时,所有各位上1的和,是3的倍数,即1的个数,是3的倍数,7和3的最小公倍数为21,

所以该整数中,1的个数最少有21个.

故答案为:21.

点评:

本题考点: 数的整除特征.

考点点评: 此题考查数的整除特征及其运用.