sinB=sin(A+C)
a/sinA=b/sinB=c/sinC
所以有 (a+c)/(sinA+sinC)=b/sinB
2b/(sinA+sinC)=b/sin(A+C)
所以有 2sin(A+C)=sinA+sinC
2sin(A+C)=2sin[(A+C)/2]cos[(A-C)/2]
2sin[(A+C)/2]cos[(A+C)/2]=sin[(A+C)/2]cos[(A-C)/2]
cos[(A+C)/2]=√3/4
由此可以得到 cos(A+C)=2{cos[(A+C)/2]}^2-1=-5/8
sin(A+C)=√39/8=sinB