设f(x)= ax x+a (a≠0),令a 1 =1,a n+1 =f(a n ),又b n =a n •a n+1
1个回答

(1)由a n+1=f(a n)可得: a n+1 =

a• a n

a n +a .

将其变形可得a n•a n+1=a(a n-a n+1),即

1

a n+1 -

1

a n =

1

a ,

所以数列{

1

a n }是首项为1,公差为

1

a 的等差数列.

(2)由(1)可得

1

a n =1+(n-1)

1

a ,

所以

1

a n =

n-1+a

a ,即 a n =

a

n+a-1 .

所以数列{a n}的通项公式为 a n =

a

n+a-1 .

(3)设S n是数列{b n}的前n项和.

由(1)可得b n=a n•a n+1=a(a n-a n+1),

所以 S n =a( a 1 - a n+1 )=

na

n+a .

所以数列{b n}的前n项和为

na

n+a .