已知正三角形ABC边长为a,当一点P在三角形ABC的外接圆上的劣弧AB(AB上面有一弧)上移动时,求S三角形PAC +S
7个回答

正三角形中心为O,半径r.

a/sin60=2r

r=a/2sin60=a/根号3

设∠PAB=m

∠PAO=m+30

PA=2rcos∠PAO=2acos(m+30)/根号3

S三角形PAC+S三角形PAB

=PA*ACsin(m+60)/2+PA*ABsinm/2

=2acos(m+30)/根号3*asin(m+60)/2+2acos(m+30)/根号3*asinm/2

=a^2/根号3*[cos(m+30)sin(m+60)+cos(m+30)sinm]

cos(m+30)sin(m+60)+cos(m+30)sinm

=(cosmcos30-sinm/2)(sinm/2+cosmsin60)+(cosmcos30-sinm/2)sinm

=3(cosm)^2/4-(sinm)^2/4+sinmcosmcos30-(sinm)^2/2

=3/4[(cosm)^2-(sinm)^2]+sin2mcos30/2

=3cos2m/4+根号3sin2m/4

=根号3/2[根号3/2cos2m+sin2m/2]

=根号3/2*sin(2m+60)

0