S=a^(2n+1)*b^(n+3)
BC=2a^(n+1)*b^n
∴AB=S/BC=[a^(2n+1)*b^(n+3)]/[2a^(n+1)*b^n]=(a^n*b^3)/2
若以AB为母线L,则2πR=BC=2a^(n+1)*b^n
∴R=[a^(n+1)*b^n]/π
∴V=πR^2*L=π{[a^(n+1)*b^n]/π}^2*(a^n*b^3)/2=[a^(3n+2)*b^(2n+3)]/2π
若以BC为母线L,则2πR=AB=(a^n*b^3)/2
∴R=(a^n*b^3)/4π
∴V=πR^2*L=π[(a^n*b^3)/4π]^2*2a^(n+1)*b^n=[a^(3n+1)*b^(n+6)]/8π