请问正多面体的棱数,角度等怎么求?
1个回答

其实,正多面体只有五种,可能你还不知道.

分别是,正四、六、八、十二、二十面体.

要是证明,得用到欧拉公式,如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2.

设正多面体的每个面是正n边行,每个顶点是m条棱,于是,棱数E应是F(面数)与n的积的一半,即

Nf=2E -------------- 1式

同时,E应是V(顶点数)与M的积的一半,即

mV=2E -------------- 2式

由1式、2式,得

F=2E/n, V=2E/m,

代入欧拉公式

V+F-E=2,

2E/m+2E/n-E=2

整理后,得1/m+1/n=1/2+1/E.

由于E是正整数,所以1/E>0.因此

1/m+1/n>1/2 -------------- 3式

3式说明m,n不能同是大于3,否则3式不成立.另一方面,由于m和n的意义(正多面体一个顶点处的棱数与多边形的边数)知,m>=3且n>=3.因此m和n至少有一个等于3

当m=3时,因为1/n>1/2-1/3=1/6,n又是正整数,所以n只能是3,4,5

同理n=3,m也只能是3,4,5

所以

n m 类型

3 3 正四面体

4 3 正六面体

3 4 正八面体

5 3 正十二面体

3 5 正二十面体

至于,你问的角度,5种正多面体的面分别是正三角形,正方形,正三角形,正五边形,正三角形.度数也就知道了吧!

建议参考一下链接,证明更易看!