怎么样求解上三角矩阵的逆矩阵就是这个
1个回答

解法1.用初等行变换将(A,E)化为(E,A^-1)

(A,E) =

1 2 1 -2 1 0 0 0

0 5 3 -2 0 1 0 0

0 0 3 5 0 0 1 0

0 0 0 3 0 0 0 1

r4*(1/3),r1+2r4,r2+2r4,r3-5r4

1 2 1 0 1 0 0 2/3

0 5 3 0 0 1 0 2/3

0 0 3 0 0 0 1 -5/3

0 0 0 1 0 0 0 1/3

r2-r3,r3*(1/3),r1-r3

1 2 0 0 1 0 -1/3 11/9

0 5 0 0 0 1 -1 7/3

0 0 1 0 0 0 1/3 -5/9

0 0 0 1 0 0 0 1/3

r2*(1/5),r1-2r2

1 0 0 0 1 -2/5 1/15 13/45

0 1 0 0 0 1/5 -1/5 7/15

0 0 1 0 0 0 1/3 -5/9

0 0 0 1 0 0 0 1/3

A^-1 =

-2/5 1/15 13/45

1/5 -1/5 7/15

0 1/3 -5/9

0 0 1/3

解2.用分块矩阵方法求逆

A =

B C

0 D

当B,D可逆时A也可逆,且 A^-1 =

B^-1 -B^-1CD^-1

0 D^-1