先求定积分
∫x/(x²-2x+2) dx
=∫(x-1+1)/(x²-2x+2) dx
=∫(x-1)/(x²-2x+2) dx+∫1/(x²-2x+2) dx
=1/2·∫1/(x²-2x+2) d(x²-2x+2)+∫1/[(x-1)²+1] d(x-1)
=1/2·ln(x²-2x+2)+arctan(x-1)+C
下面求定积分
∫【1→t】x/(x²-2x+2) dx
=[1/2·ln(x²-2x+2)+arctan(x-1)]|【1→t】
=1/2·ln(t²-2t+2)+arctan(t-1)