裴波那契数列的证明
1个回答

裴波那契数列:1,1,2,3,5,8,13,.

裴波那契数列递推公式:F(n+2) = F(n+1) + F(n)

F(1)=F(2)=1.

它的通项求解如下:

F(n+2) = F(n+1) + F(n) => F(n+2) - F(n+1) - F(n) = 0

令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))

展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0

显然 a+b=1 ab=-1

由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根

解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2

令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即

F(n+1) - aF(n) = G(n) = b^n --------(1)

在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:

F(n+1) - xF(n) = y^n

F(n+1) - yF(n) = x^n

以上两式相减得:

(x-y)F(n) = x^n - y^n

F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5