1、设公差为d,所以
kd=72-90=-18
(2k-1)d=-33
两式相比得,
(2k-1)/k=11/6
k=6
所以d=-3
公差为-3
2、an-1=3a(n-1)-3(注:a(n-1)中的(n-1)为下标,下同)
an-1=3[a(n-1)-1]
所以数列{an-1}是首项为a1-1=1,公比为3的等比数列.
所以an-1=3^(n-1)
an=3^(n-1)+1
3、原式=[1+3+5+…+(2n-1)]+[1/2-1/4+1/8-…+(-1)^(n+1)*1/2^n]
=n^2+(1/2)[1-(-1/2)^n]/(3/2)
=n^2+[1-(-1/2)^n]/3
=n^2+1/3-(-1/2)^n/3
4、原式=1-1/2+1/2-1/3+1/3-1/4+…+1/n-1/(n+1)=n/(n+1)
5、原式=(1/2)[1-1/3+1/2-1/4+1/3-1/5+…+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=(1/2)[3/2-(2n+3)/(n+1)(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]