(^2表示平方)
"恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1",则
当x1=0,x2=x时
f(x+0)=f(x)=f(x)+f(0)+1
所以 f(0)=-1
当x1=-x2=x时
f(0)=f(x)+f(x)+2x^2+1
-1=2f(x)+2x^2+1
∴f(x)=-x^2-1
∴f(x)的最大值=-1,没有最小值
设m=[f(x)]^2-2f(x)=[f(x)]^2-2f(x)+1-1=[f(x)-1]^2+1
则f(x)=-1时,m有最小值=5
F(x)=a^m>0
当0