已知三角形ABC,AB=AC,H是BC中点,HE垂直于AC于E,O为HE中点,求证:AO垂直于BE
2个回答

过B作BD⊥AC交AC于D.令AO、BE相交于F.

∵AB=AC、BH=CH,∴∠AHC=90°.

∵∠AHC=∠BDC=90°,∴∠EAH=∠DBC(同是∠C的余角).

∵∠EAH=∠DBC、∠AEH=∠BDC=90°,∴△EAH∽△DBC,∴AE/BD=EH/DC.······①

∵BD⊥AC、HE⊥AC,∴BD∥HE,又BH=CH,∴DE=DC/2,而EO=EH/2,

∴EH/DC=(EH/2)/(DC/2)=EO/DE.······②

由①、②,得:AE/BD=EO/DE,又∠AEO=∠BDE=90°,∴△AEO∽△BDE,

∴∠DAF=∠DBF,∴A、B、F、D共圆,∴∠AFB=∠ADB=90°,∴AO⊥BE.