椭圆整理为x^2/4+y^2=1
a=2,b=1,c=3^(1/2)
|PF1|+|PF2|=2a=4
F1(-3^(1/2),0),F2(3^(1/2),0)
由P在椭圆x^2/4+y^2=1设P(2cosα,sinα)得
|PF1|^2=(2cosα+3^(1/2))^2+sinα^2
|PF2|^2=(2cosα-3^(1/2))^2+sinα^2
|PF1|^2+|PF2|^2=(2cosα+3^(1/2))^2+sinα^2+(2cosα-3^(1/2))^2+sinα^2
=8(cosα)^2+6+2(sinα)^2
=8+6(cosα)^2
|PF1|^2+|PF2|^2的最小值为8