初二数学题!急!在线等!1.已知A(Y+Z)=B(Z+X)=C(X+Y),A,B,C都不为零求证Y-Z/A(B-C)=Z
4个回答

1、

A(Y+Z)=B(Z+X)

A=B(Z+X)/(Y+Z)

C(X+Y)=B(Z+X)

C=B(Z+X)/(X+Y)

A-B=B[(Z+X)/(Y+Z)-1]

=(X-Y)/(Y+Z)

B-C=B[1-(Z+X)/(X+Y)

=(Y-Z)/(X+Y)

(Y-Z)/A(B-C)=(Y-Z)(X+Y)/A(Y-Z)=(X+Y)/A

(X-Y)/C(A-B)=(X-Y)(Y+Z)/C(X-Y)=(Y+Z)/C

由于A(Y+Z)=C(X+Y)

因此,(X+Y)/A=(Y+Z)/C

因此,

(Y-Z)/A(B-C)=(Z-X)/B(C-A)

由轮换对称性,知

Y-Z/A(B-C)=Z-X/B(C-A)=X-Y/C(A-B)

2、

[X/(Y+Z) + Y/(Z+X) + Z/(X+Y)]X=X

X^2/(Y+Z)+XY/(Z+X)+XZ/(X+Y)=X (1)

[X/(Y+Z) + Y/(Z+X) + Z/(X+Y)]Y=Y

XY/(Y+Z)+Y^2/(Z+X)+YZ/(X+Y)=Y (2)

[X/(Y+Z) + Y/(Z+X) + Z/(X+Y)]Z=Z

XZ/(X+Z)+YZ/(Z+X)+Z^2/(X+Y)=Z (3)

(1)+(2)+(3):

X^2/(Y+Z)+Y^2/(Z+X)+Z^2/(X+Y)+XY/(Z+X)+YZ/(Z+X)+XZ/(X+Y)+YZ/(X+Y)+XY/(Z+X)+XZ/(Z+X)=X+Y+Z

X^2/(Y+Z)+Y^2/(Z+X)+Z^2/(X+Y)+Y(X+Z)/(Z+X)+Z(X+Y)/(X+Y)+X(Y+Z)/(Z+X)=X+Y+Z

X^2/(Y+Z)+Y^2/(Z+X)+Z^2/(X+Y)+Y+Z+X=X+Y+Z

因此:

X^2/(Y+Z)+Y^2/(Z+X)+Z^2/(X+Y)=0