证明:
令a(y+z)=b(x+y)=c(x+z)=k
则有:
y+z=k/a①
x+y=k/b②
x+z=k/c③
由①+②+③得:
x+y+z=1/2k(1/a+1/b+1/c)④
由④-①,④-②,④-③分别可得:
x=1/2k(1/b+1/c-1/a)
y=1/2k(1/a+1/b-1/c)
z=1/2k(1/a+1/c-1/b)
∴y-z/a(b-c)=1/2k(1/a+1/b-1/c-1/a+1/b-1/c)/a(b-c)
=(c-b)k/abc(b-c)
=-k/abc
同理,z-x/b(c-a)=-k/abc
x-y/c(a-b)=-k/abc
∴y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)