(Ⅰ)当x≤0时f(x)=0,
当x>0时, f(x)= 2 x -
1
2 x ,
有条件可得, 2 x -
1
2 x =2 ,
即2 2x-2×2 x-1=0,解得 2 x =1±
2 ,∵2 x>0,∴ 2 x =1+
2 ,∴ x=lo g 2 (1+
2 ) .
(Ⅱ)当t∈[1,2]时, 2 t ( 2 2t -
1
2 2t )+m( 2 t -
1
2 t )≥0 ,
即m(2 2t-1)≥-(2 4t-1).∵2 2t-1>0,∴m≥-(2 2t+1).
∵t∈[1,2],∴-(1+2 2t)∈[-17,-5],
故m的取值范围是[-5,+∞).