平行四边形的性质和判定
1.性质:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等. (简述为“平行四边形的对边相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等. (简述为“平行四边形的对角相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补 (简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行线段相等.
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分. (简述为“平行四边形的两条对角线互相平分”)
(6)平行四边形是中心对称图形,对称中心是两条对角线的交点.
2.判定:
(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形. (简述为“两组对边分别相等的四边形是平行四边形”)
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形. (简述为“一组对边平行且相等的四边形是平行四边形”)
(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形. (简述为“对角线互相平分的四边形是平行四边形”)
(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形. (简述为“两组对角分别相等的四边形是平行四边形”
(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形. (简述为“两组对边分别平行的四边形是平行四边形”)
矩形的性质和判定
性质
①四个角都是直角
②矩形的对角线相等 .
注意:矩形具有平行四边形的一切性质 .
判定:
①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形 .
菱形的性质和判定
性质:
①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .
注意:菱形也具有平行四边形的一切性质 .
判定:
①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
(4).有一条对角线平分一组对角的平行四边形是菱形
正方形的性质和判定
性质:
①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .
判定:
因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径
①有一组邻边相等的矩形是正方形
②有一个角是直角的菱形是正方形
③两条对角线相等,且互相垂直平分的四边形
④两条对角线相等,且互相垂直的平行四边形
供参考!江苏吴云超祝你学习进步