在三角形ABC中,A,B,C,所对的边a,b,c满足cosC=1-8b^2/a^2,求1/TANA+1/TANC,若ta
1个回答

因为cosC^2+sinC^2=1;可得到:sinC=2b/a;

(1)由正弦定理可得:b/a=sinB/sinA

故:sinC=2sinB/sinA

而sinB=sin(A+C)=sinAcosC+cosAsinC

则:sinC=2(sinAcosC+cosAsinC)/sinA

sinC=2(cosC+sinC/tanA)

两边同除以sinC,得:

1=2(1/tanC+1/tanA)

故:1/tanA+1/tanC=1/2

(2)B=180度-(A+C)

所以tanB=-tan(A+C)=-(tanA+tanC)/(1-tanA*tanC)=8/15

又由1/tanA+1/tanC=1/2,可得:

tanA*tanC=2(tanA+tanC)

故:-(tanA+tanC)/[1-2(tanA+tanC)]=8/15

-15tanA-15tanC=8-16tanA-16tanC

tanA+tanC=8

tanA=8-tanC,代入tanA*tanC=2(tanA+tanC)=16,得:

(8-tanC)tanC=16

(tanC)^2-8tanC+16=0

(tanC-4)^2=0

tanC=4

tanA=8-tanC=8-4=4

回答完毕!