求证:2sinAsinBsinC/(sinA+sinB+sinc)=4sin(A/2)sin(B/2)sin(C/2)
1个回答

在△ABC中,显然有:A+B+C=180°,∴A/2+B/2+C/2=90°,

∴sinC=sin(A+B)、sin[(A+B)/2]=cos(C/2).

∴sinA+sinB+sinC

=2sin[(A+B)/2]cos[(A-B)/2]+sin(A+B)

=2sin[(A+B)/2]cos[(A-B)/2]+2sin[(A+B)/2]cos[(A+B)/2]

=2sin[(A+B)/2]{cos[(A-B)/2]+cos[(A+B)/2]}

=2cos(C/2)×2cos(A/2)cos(B/2)

=4cos(A/2)cos(B/2)cos(C/2),

∴8sin(A/2)cos(A/2)sin(B/2)cos(B/2)sin(C/2)cos(C/2)

=2sin(A/2)sin(B/2)sin(C/2)(sinA+sinB+sinC),

∴sinAsinBsinC=2sin(A/2)sin(B/2)sin(C/2)(sinA+sinB+sinC),

∴2sinAsinBsinC/(sinA+sinB+sinC)=4sin(A/2)sin(B/2)sin(C/2).